2nd Tissue Engineering and Regenerative Medicine International Society World Congress 2009. 31st August – 3rd September, Seoul, South Korea

Cryopreservation of Adherent Cells: Strategies to Improve Post-Thawing Viability and Function

<u>R. Malpique¹, F. Ehrhart², A. Katsen-Globa², H. Zimmermann² and P. M. Alves¹</u>

¹Instituto Tecnologia Química Biológica (ITQB) / Instituto Biologia Experimental (IBET), Oeiras, Portugal; ²Frauhofer-IBMT, Ensheimer (FhG-IBMT), St. Ingbert, Germany http://tca.itqb.unl.pt; www.itqb.unl.pt

Introduction

Clinical and commercial availability of cell-based products for tissue engineering and regenerative medicine require effective methods for their long-term storage in cryobanks, which are not yet established for complex systems such as cell monolayers, tissues or biosynthetic constructs ^[1].

Cell entrapment in a gel is a promising cryopreservation strategy to improve post-thaw viability and function of cell types which were shown to poorly survive the cryopreservation process ^[2,3].

In this work, combined strategies for the cryopreservation of adherent cells were investigated based on cell entrapment in clinical-grade, highly purified alginate of extremely high viscosity (0.1% w/v viscosity in distilled water > 30 mPa.s) uniformly cross-linked with Ba^{2+} [4].

Undifferentiated

As model systems, Neuroblastoma N2a and Caco-2 Cell Models:

Colon Adenocarcinoma cell lines were used due to their specific characteristics, which makes them interesting lines for studying the cryopreservation of differentiated cells ^[5]. As the cryopreservation (Biolife Solutions[®]) medium, serum-free CryoStor[™]

Culture: Caco-2 and N2a cells were cultured on 4-well plates in either a non-differentiated or fully differentiated state. Caco-2 cells spontaneous differentiation into

enterocyte-like cells was achieved through long-time culture. Neuronal differentiation of N2a cells was induced through retinoic acid addition to low-serum content

Differentiated (21 d)

N2a

STRATEGY

Develop optimized methodologies for the

cryopreservation of functional cell

monolayers for cell-based therapies and *in*-

vitro pharmacological studies

Monolayer's entrapment beneath a layer of ultra-high viscous (UHV) alginate

Aim and Strategy

- Improve cell-specific function
- Avoid monolayer's detachment
- Avoid lost of cell-cell contact

solution was compared with culture medium supplemented with bovine serum, both containing 10% Me₂SO.

Differentiated (5 d) Undifferentiated

Evaluated parameters:

Differentiation

Methods

differentiation state/capacity

Post-thaw recovery of non-differentiated monolayers

120

Post-thaw viability and differentiation state of differentiated monolayers

Scanning electron microscopy:

Undamaged cell surface with	
thick microvilli carpet	
Stores and	

Damaged cells at the monolayer's surface Shrinkage of the whole "tissue-like" structure

Multiple cell layers Additional factors related to the three dimensional arrangement

Slower recovery when compared to nondifferentiated cells

Alginate entrapment:

Maintenance of networks

Alginate entrapment improves recovery of culture medium cryopreserved cells by minimizing membrane damage and cell detachment after thawing.

Nevertheless...Up to 50% death within 24 hours after thawing!

CryoStor[™]-CS10 solution allows full recovery of metabolic activity and initiation of proliferation within 24 hours post-thawing.

Immediately

after thawing

CONCLUSIONS

• Monolayer entrapment beneath an alginate layer improves cell recovery by avoiding detachment from the surface and breakage of cell-cell interactions.

• The use of CryoStor[™] solution improves the cryopreservation process for both cells lines, allowing the maintenance of high post-thaw recovery of viability and differentiation state.

An efficient novel strategy for successful cryopreservation of ready-to-use cell monolayers was validated based on cell entrapment in clinical grade, UHV alginate and the use of CryoStorTM solution

Supports the implementation of routine cryopreservation practices for engineered cells and tissues and their immediate availability for cell-based therapies.

References

[1] Baust, J. G. and Baust, J. M., Advances in Biopreservation CRC Press:63-87(2006). [2] Mahler, S. M. et al., Cell Transplant. 12 (6): 579-92 (2003). [3] Inaba, K. et al., Transplantation 61 (2): 175-9 (1996). [4] Zimmermann, H. et al., J. Mat. Sci.: Mat. Med. 16(6): 491 – 501 (2005). [5] Malpique, R. et al., Biotechnol. Bioeng. 98(1): 155-66 (2007).

Acknowledgments

The authors acknowledge the financial support received from the European commission ("Cell Programming by Nanoscaled Devices" NMP4-CT-2004-500039 and the Fundação para a Ciência e Tecnologia (FCT), Portugal (PTDC/BIO/69407/2006). R Malpique acknowledges FCT for finantial support (Grant SFRH/BD/22647/2005).