Skip to main content

Advertisement

Log in

Functionalizing Ascl1 with Novel Intracellular Protein Delivery Technology for Promoting Neuronal Differentiation of Human Induced Pluripotent Stem Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Pluripotent stem cells can become any cell type found in the body. Accordingly, one of the major challenges when working with pluripotent stem cells is producing a highly homogenous population of differentiated cells, which can then be used for downstream applications such as cell therapies or drug screening. The transcription factor Ascl1 plays a key role in neural development and previous work has shown that Ascl1 overexpression using viral vectors can reprogram fibroblasts directly into neurons. Here we report on how a recombinant version of the Ascl1 protein functionalized with intracellular protein delivery technology (Ascl1-IPTD) can be used to rapidly differentiate human induced pluripotent stem cells (hiPSCs) into neurons. We first evaluated a range of Ascl1-IPTD concentrations to determine the most effective amount for generating neurons from hiPSCs cultured in serum free media. Next, we looked at the frequency of Ascl1-IPTD supplementation in the media on differentiation and found that one time supplementation is sufficient enough to trigger the neural differentiation process. Ascl1-IPTD was efficiently taken up by the hiPSCs and enabled rapid differentiation into TUJ1-positive and NeuN-positive populations with neuronal morphology after 8 days. After 12 days of culture, hiPSC-derived neurons produced by Ascl1-IPTD treatment exhibited greater neurite length and higher numbers of branch points compared to neurons derived using a standard neural progenitor differentiation protocol. This work validates Ascl1-IPTD as a powerful tool for engineering neural tissue from pluripotent stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Willerth, S. M. (2011). Neural tissue engineering using embryonic and induced pluripotent stem cells. Stem Cell Research & Therapy, 2, 17.

    Article  CAS  Google Scholar 

  2. Buzhor, E., Leshansky, L., Blumenthal, J., et al. (2014). Cell-based therapy approaches: the hope for incurable diseases. Regenerative Medicine, 9, 649–672.

    Article  CAS  PubMed  Google Scholar 

  3. Fox, I. J., Daley, G. Q., Goldman, S. A., Huard, J., Kamp, T. J., & Trucco, M. (2014). Stem cell therapy. Use of differentiated pluripotent stem cells as replacement therapy for treating disease. Science, 345, 1247391.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Grochmal, J., & Midha, R. (2014). Recent advances in stem cell-mediated peripheral nerve repair. Cells, Tissues, Organs, 200, 13–22.

    Article  CAS  PubMed  Google Scholar 

  5. Martin, G. R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of the National Academy of Sciences of the United States of America, 78, 7634–7638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147.

    Article  CAS  PubMed  Google Scholar 

  7. Takahashi, K., Tanabe, K., Ohnuki, M., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861–872.

    Article  CAS  PubMed  Google Scholar 

  8. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.

    Article  CAS  PubMed  Google Scholar 

  9. Cyranoski, D. (2014). Japanese woman is first recipient of next-generation stem cells. Nature News.

  10. Doron-Mandel, E., Fainzilber, M., & Terenzio, M. (2015). Growth control mechanisms in neuronal regeneration. FEBS Letters, 589, 1669–1677.

    Article  CAS  PubMed  Google Scholar 

  11. Emery, B., & Lu, Q. R. (2015). Transcriptional and epigenetic regulation of oligodendrocyte development and myelination in the central nervous system. Cold Spring Harbor Perspectives in Biology, 7, a020461.

    Article  PubMed  Google Scholar 

  12. Imayoshi, I., & Kageyama, R. (2014). bHLH factors in self-renewal, multipotency, and fate choice of neural progenitor cells. Neuron, 82, 9–23.

    Article  CAS  PubMed  Google Scholar 

  13. Prochiantz, A., & Di Nardo, A. A. (2015). Homeoprotein signaling in the developing and adult nervous system. Neuron, 85, 911–925.

    Article  CAS  PubMed  Google Scholar 

  14. Yamamizu, K., Piao, Y., Sharov, A. A., et al. (2013). Identification of transcription factors for lineage-specific ESC differentiation. Stem Cell Reports, 1, 545–559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kageyama, R., Ishibashi, M., Takebayashi, K., & Tomita, K. (1997). bHLH transcription factors and mammalian neuronal differentiation. The International Journal of Biochemistry & Cell Biology, 29, 1389–1399.

    Article  CAS  Google Scholar 

  16. Ball, D. W., Azzoli, C. G., Baylin, S. B., et al. (1993). Identification of a human achaete-scute homolog highly expressed in neuroendocrine tumors. Proceedings of the National Academy of Sciences of the United States of America, 90, 5648–5652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Casarosa, S., Fode, C., & Guillemot, F. (1999). Mash1 regulates neurogenesis in the ventral telencephalon. Development, 126, 525–534.

    CAS  PubMed  Google Scholar 

  18. Gonzalez, F., Romani, S., Cubas, P., Modolell, J., & Campuzano, S. (1989). Molecular analysis of the asense gene, a member of the achaete-scute complex of Drosophila melanogaster, and its novel role in optic lobe development. EMBO Journal, 8, 3553–3562.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Vasconcelos, F. F., & Castro, D. S. (2014). Transcriptional control of vertebrate neurogenesis by the proneural factor Ascl1. Frontiers in Cellular Neuroscience, 8, 412.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Colasante, G., Lignani, G., Rubio, A., et al. (2015). Rapid conversion of fibroblasts into functional forebrain GABAergic interneurons by direct genetic reprogramming. Cell Stem Cell.

  21. Ueki, Y., Wilken, M. S., Cox, K. E., et al. (2015). Transgenic expression of the proneural transcription factor Ascl1 in Muller glia stimulates retinal regeneration in young mice. Proceedings of the National Academy of Sciences of the United States of America, 112, 13717–13722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chanda, S., Ang, C. E., Davila, J., et al. (2014). Generation of induced neuronal cells by the single reprogramming factor ASCL1. Stem Cell Reports, 3, 282–296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gopalakrishnan, S., Hor, P., & Ichida, J.K. (2015). New approaches for direct conversion of patient fibroblasts into neural cells. Brain Research.

  24. Vierbuchen, T., Ostermeier, A., Pang, Z. P., Kokubu, Y., Sudhof, T. C., & Wernig, M. (2010). Direct conversion of fibroblasts to functional neurons by defined factors. Nature, 463, 1035–1041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jiang, H., Xu, Z., Zhong, P., et al. (2015). Cell cycle and p53 gate the direct conversion of human fibroblasts to dopaminergic neurons. Nature Communications, 6, 10100.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hu, K. (2014). Vectorology and factor delivery in induced pluripotent stem cell reprogramming. Stem Cells and Development, 23, 1301–1315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee, K.H., Lin, L.Y.C., & Wang, A. (2014). Intracellular protein delivery. Google Patents.

  28. Yu, J., Vodyanik, M. A., Smuga-Otto, K., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318, 1917–1920.

    Article  CAS  PubMed  Google Scholar 

  29. Robinson, M., Yau, S., Sun, L., et al. (2015). Optimizing differentiation protocols for producing dopaminergic neurons from human induced pluripotent stem cells for tissue engineering applications. Biomarker Insights, (1), 61–70.

  30. Lecuyer, E., Lariviere, S., Sincennes, M. C., et al. (2007). Protein stability and transcription factor complex assembly determined by the SCL-LMO2 interaction. Journal of Biological Chemistry, 282, 33649–33658.

    Article  CAS  PubMed  Google Scholar 

  31. Willerth, S. M., Faxel, T. E., Gottlieb, D. I., & Sakiyama-Elbert, S. E. (2007). The effects of soluble growth factors on embryonic stem cell differentiation inside of fibrin scaffolds. Stem Cells, 25, 2235–2244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Willerth, S. M., Rader, A., & Sakiyama-Elbert, S. E. (2008). The effect of controlled growth factor delivery on embryonic stem cell differentiation inside fibrin scaffolds. Stem Cell Research, 1, 205–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Willerth, S. M., & Sakiyama-Elbert, S. E. (2009). Kinetic analysis of neurotrophin-3-mediated differentiation of embryonic stem cells into neurons. Tissue Engineering Part A, 15, 307–318.

    Article  CAS  PubMed  Google Scholar 

  34. He, S., Guo, Y., Zhang, Y., et al. (2015). Reprogramming somatic cells to cells with neuronal characteristics by defined medium both in vitro and in vivo. Cell Regeneration (London, England), 4, 12.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge support from our NSERC Engage grant with iProgen Biotech, Inc. and funding from the Canada Research Chairs Program (S.M.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie Michelle Willerth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robinson, M., Chapani, P., Styan, T. et al. Functionalizing Ascl1 with Novel Intracellular Protein Delivery Technology for Promoting Neuronal Differentiation of Human Induced Pluripotent Stem Cells. Stem Cell Rev and Rep 12, 476–483 (2016). https://doi.org/10.1007/s12015-016-9655-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-016-9655-7

Keywords

Navigation