Long-term function of cryopreserved rat hepatocytes in a coculture system

Cell Transplant. 2004;13(2):187-95. doi: 10.3727/000000004773301799.

Abstract

The goal of this study was to investigate postpreservation long-term function of cryopreserved primary rat hepatocytes using the hepatocyte/3T3-J2 fibroblast coculture system. The long-term function of thawed hepatocytes cocultured with fibroblasts was evaluated and compared with hepatocytes cultured without fibroblasts. Fresh isolated primary rat hepatocytes were frozen at a controlled rate (-1 degrees C/min) up to -80 degrees C, and then stored in liquid nitrogen for up to 90 days. Thawed hepatocytes were thereafter cocultured with 3T3-J2 murine fibroblasts and cocultivation was monitored for 14 days. The viability of fresh isolated hepatocytes was 91.4%, and that of cryopreserved hepatocytes was 82.1%. Cellular morphology and polarity, which were determined by the localization of actin filaments and connexin-32, were successfully maintained in cryopreserved hepatocytes following cryopreservation. Albumin and urea synthesis reached the maximum level and became stable after day 7 in coculture in both fresh and cryopreserved hepatocytes. Urea synthesis of cryopreserved hepatocytes was maintained 89.0% of nonfrozen fresh control, and albumin production of cryopreserved hepatocytes was 63.7% of control in coculture. Cytochrome P450 activity, which was measured by deethylation of ethoxyresorufin, was also maintained in cryopreserved hepatocytes at 88.6% of nonfrozen fresh control in coculture. The retention of synthetic and detoxification activities was verified to be well preserved during extended low-temperature storage (90 days). Both fresh control and cryopreserved hepatocytes cultured without fibroblast did not retain their synthetic and detoxification functions in long-term culture. These data illustrate that, through the utilization of our cryopreservation procedure, primary hepatocyte function was successfully maintained when placed into coculture configuration following thawing.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Actin Cytoskeleton / metabolism
  • Albumins / biosynthesis
  • Animals
  • Cells, Cultured
  • Coculture Techniques
  • Cold Temperature
  • Connexins / metabolism
  • Cryopreservation*
  • Cytochrome P-450 Enzyme System / metabolism
  • Female
  • Fibroblasts
  • Gap Junction beta-1 Protein
  • Hepatocytes* / cytology
  • Hepatocytes* / metabolism
  • Rats
  • Rats, Inbred Lew
  • Urea / metabolism

Substances

  • Albumins
  • Connexins
  • Urea
  • Cytochrome P-450 Enzyme System