Advertisement
Review Article| Volume 21, ISSUE 9, P943-957, September 2019

Download started.

Ok

Preservation of cell-based immunotherapies for clinical trials

Published:August 12, 2019DOI:https://doi.org/10.1016/j.jcyt.2019.07.004

Highlights

  • Preservation technology is essential to the supply chain of cellular therapy.
  • Five factors in cryopreservation affect the outcome of a cell therapy.
  • DMSO is the most commonly used CPA to freeze cells in cell-based immunotherapy.
  • The most commonly used cooling rate is -1˚C/min to freeze cells for immunotherapy.
  • Non-DMSO CPAs have demonstrated to be better than DMSO at preserving immune cells.

Abstract

In the unique supply chain of cellular therapies, preservation is important to keep the cell product viable. Many factors in cryopreservation affect the outcome of a cell therapy: (i) formulation and introduction of a freezing medium, (ii) cooling rate, (iii) storage conditions, (iv) thawing conditions and (v) post-thaw processing. This article surveys clinical trials of cellular immunotherapy that used cryopreserved regulatory, chimeric antigen receptor or gamma delta T cells, dendritic cells or natural killer (NK) cells. Several observations are summarized from the given information. The aforementioned cell types have been similarly frozen in media containing 5–10% dimethyl sulfoxide (DMSO) with plasma, serum or human serum albumin. Two common freezing methods are an insulated freezing container such as Nalgene Mr. Frosty and a controlled-rate freezer at a cooling rate of -1°C/min. Water baths at approximately 37°C have been commonly used for thawing. Post-thaw processing of cryopreserved cells varied greatly: some studies infused the cells immediately upon thawing; some diluted the cells in a carrier solution of varying formulation before infusion; some washed cells to remove cryoprotective agents; and others re-cultured cells to recover cell viability or functionality lost due to cryopreservation. Emerging approaches to preserving cellular immunotherapies are also described. DMSO-free formulations of the freezing media have demonstrated improved preservation of cell viability in T lymphocytes and of cytotoxic function in natural killer cells. Saccharides are a common type of molecule used as an alternative cryoprotective agent to DMSO. Improving methods of preservation will be critical to growth in the clinical use of cellular immunotherapies.

Key Words

To read this article in full you will need to make a payment

Purchase one-time access:

Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
One-time access price info
  • For academic or personal research use, select 'Academic and Personal'
  • For corporate R&D use, select 'Corporate R&D Professionals'

Subscribe:

Subscribe to Cytotherapy
Already a print subscriber? Claim online access
Already an online subscriber? Sign in
Institutional Access: Sign in to ScienceDirect

References

    • Yong K.W.
    • Wan Safwani W.K.Z.
    • Xu F.
    • Wan Abas W.A.B.
    • Choi J.R.
    • Pingguan-Murphy B.
    Cryopreservation of Human Mesenchymal Stem Cells for Clinical Applications: Current Methods and Challenges.
    Biopreserv Biobank. 2015; 13: 231-239https://doi.org/10.1089/bio.2014.0104
    • Marquez-Curtis L.A.
    • Janowska-Wieczorek A.
    • McGann L.E.
    • Elliott J.A.W.
    Mesenchymal stromal cells derived from various tissues: Biological, clinical and cryopreservation aspects.
    Cryobiology. 2015; 71: 181-197https://doi.org/10.1016/j.cryobiol.2015.07.003
    • Hubel A.
    Preservation of cells: a practical manual.
    Wiley-Blackwell, Hoboken, NJ2018
    • Lovelock J.E.
    • Bishop M.W.
    Prevention of freezing damage to living cells by dimethyl sulphoxide.
    Nature. 1959; 183: 1394-1395
    • Levin R.L.
    • Miller T.W.
    An optimum method for the introduction or removal of permeable cryoprotectants: isolated cells.
    Cryobiology. 1981; 18: 32-48
    • Pollock K.
    Algorithm optimization of cryopreservation protocols to improve mesenchymal stem cell functionality.
    University of Minnesota. 2016; 11: 2806-2815https://doi.org/10.1016/j.cryobiol.2016.09.078
    • Pollock K.
    • Yu G.
    • Moller-Trane R.
    • Koran M.
    • Dosa P.I.
    • McKenna D.H.
    • et al.
    Combinations of Osmolytes, Including Monosaccharides, Disaccharides, and Sugar Alcohols Act in Concert During Cryopreservation to Improve Mesenchymal Stromal Cell Survival.
    Tissue Eng Part C Methods. 2016; 22: 999-1008https://doi.org/10.1089/ten.tec.2016.0284
    • Pi C.H.
    • Yu G.
    • Petersen A.
    • Hubel A.
    Characterizing the “sweet spot” for the preservation of a T-cell line using osmolytes.
    Sci Rep. 2018; 8: 16623https://doi.org/10.1038/s41598-018-34638-7
    • Mazur P.
    Principles of Cryobiology.
    in: Fuller B. Lane N. Benson E. Life Frozen State. CRC Press, Boca Raton, FL2004: 3-66
    • Hubel A.
    • Spindler R.
    • Skubitz A.P.N.
    Storage of Human Biospecimens: Selection of the Optimal Storage Temperature.
    Biopreserv Biobank. 2014; 12: 165-175https://doi.org/10.1089/bio.2013.0084
    • Chabot D.
    • Tremblay T.
    • Paré I.
    • Bazin R.
    • Loubaki L.
    Transient warming events occurring after freezing impairs umbilical cord–derived mesenchymal stromal cells functionality.
    Cytotherapy. 2017; 19: 978-989https://doi.org/10.1016/j.jcyt.2017.04.005
    • Baboo J.
    • Kilbride P.
    • Delahaye M.
    • Milne S.
    • Fonseca F.
    • Blanco M.
    • et al.
    The Impact of Varying Cooling and Thawing Rates on the Quality of Cryopreserved Human Peripheral Blood T Cells.
    Sci Rep. 2019; 9: 3417https://doi.org/10.1038/s41598-019-39957-x
    • Reinhart W.H.
    • Piety N.Z.
    • Deuel J.W.
    • Makhro A.
    • Schulzki T.
    • Bogdanov N.
    • et al.
    Washing stored red blood cells in an albumin solution improves their morphologic and hemorheologic properties.
    Transfusion. 2015; 55: 1872-1881https://doi.org/10.1111/trf.13052
    • Henig I.
    • Zuckerman T.
    Hematopoietic stem cell transplantation-50 years of evolution and future perspectives.
    Rambam Maimonides Med J. 2014; 5: e0028https://doi.org/10.5041/RMMJ.10162
    • Sakaguchi S.
    Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses.
    Annu Rev Immunol. 2004; 22: 531-562https://doi.org/10.1146/annurev.immunol.21.120601.141122
    • Sakaguchi S.
    • Wing K.
    • Onishi Y.
    • Prieto-Martin P.
    • Yamaguchi T.
    Regulatory T cells: How do they suppress immune responses?.
    Int Immunol. 2009; 21: 1105-1111https://doi.org/10.1093/intimm/dxp095
    • Ramlal R.
    • Hildebrandt G.C.
    Advances in the use of regulatory T-cells for the prevention and therapy of graft-vs.-host disease.
    Biomedicines. 2017; 5: 23https://doi.org/10.3390/biomedicines5020023
    • Beres A.J.
    • Drobyski W.R.
    The Role of Regulatory T Cells in the Biology of Graft Versus Host Disease.
    Front Immunol. 2013; 4: 163https://doi.org/10.3389/fimmu.2013.00163
    • Gliwiński M.
    • Iwaszkiewicz-Grześ D.
    • Trzonkowski P.
    Cell-Based Therapies with T Regulatory Cells.
    BioDrugs. 2017; 4: 335-347https://doi.org/10.1007/s40259-017-0228-3
    • Brunstein C.G.
    • Miller J.S.
    • McKenna D.H.
    • Hippen K.L.
    • DeFor T.E.
    • Sumstad D.
    • et al.
    Umbilical cord blood-derived T regulatory cells to prevent GVHD: Kinetics, toxicity profile, and clinical effect.
    Blood. 2016; 127: 1044-1051https://doi.org/10.1182/blood-2015-06-653667
    • Brunstein C.G.
    • Miller J.S.
    • Cao Q.
    • McKenna D.H.
    • Hippen K.L.
    • Curtsinger J.
    • et al.
    Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: Safety profile and detection kinetics.
    Blood. 2011; 117: 1061-1070https://doi.org/10.1182/blood-2010-07-293795
    • Theil A.
    • Tuve S.
    • Oelschlägel U.
    • Maiwald A.
    • Döhler D.
    • Oßmann D.
    • et al.
    Adoptive transfer of allogeneic regulatory T cells into patients with chronic graft-versus-host disease.
    Cytotherapy. 2015; 17: 473-486https://doi.org/10.1016/j.jcyt.2014.11.005
    • Safinia N.
    • Vaikunthanathan T.
    • Fraser H.
    • Thirkell S.
    • Lowe K.
    • Blackmore L.
    • et al.
    Successful expansion of functional and stable regulatory T cells for immunotherapy in liver transplantation.
    Oncotarget. 2016; 7: 7563-7577https://doi.org/10.18632/oncotarget.6927
    • Miliotou A.N.
    • Papadopoulou L.C.
    CAR T-cell Therapy: A New Era in Cancer Immunotherapy.
    Curr Pharm Biotechnol. 2018; 19: 5-18https://doi.org/10.2174/1389201019666180418095526
    • D'Aloia M.M.
    • Zizzari I.G.
    • Sacchetti B.
    • Pierelli L.
    • Alimandi M.
    CAR-T cells: The long and winding road to solid tumors review-article.
    Cell Death Dis. 2018; 9: 282https://doi.org/10.1038/s41419-018-0278-6
    • Berdeja J.G.
    • Lin Y.
    • Raje N.S.
    • Siegel D.S.D.
    • Munshi N.C.
    • Liedtke M.
    • et al.
    First-in-human multicenter study of bb2121 anti-BCMA CAR T-cell therapy for relapsed/refractory multiple myeloma: Updated results.
    J Clin Oncol. 2017; 35 (3010–3010)https://doi.org/10.1200/JCO.2017.35.15_suppl.3010
    • Junghans R.P.
    • Ma Q.
    • Rathore R.
    • Gomes E.M.
    • Bais A.J.
    • Lo A.S.Y.
    • et al.
    Phase I Trial of Anti-PSMA Designer CAR-T Cells in Prostate Cancer: Possible Role for Interacting Interleukin 2-T Cell Pharmacodynamics as a Determinant of Clinical Response.
    Prostate. 2016; 76: 1257-1270https://doi.org/10.1002/pros.23214
    • Beatty G.L.
    • Haas A.R.
    • Maus M.V.
    • Torigian D.A.
    • Soulen M.C.
    • Plesa G.
    • et al.
    Mesothelin-Specific Chimeric Antigen Receptor mRNA-Engineered T Cells Induce Antitumor Activity in Solid Malignancies.
    Cancer Immunol Res. 2018; 2: 112-120https://doi.org/10.1158/2326-6066.CIR-13-0170
    • Maus M.V.
    • Haas A.R.
    • Beatty G.L.
    • Albelda S.M.
    • Levine B.L.
    • Liu X.
    • et al.
    T Cells Expressing Chimeric Antigen Receptors Can Cause Anaphylaxis in Humans.
    Cancer Immunol Res. 2013; 1: 26-31https://doi.org/10.1158/2326-6066.CIR-13-0006
    • Garfall A.L.
    • Maus M.V.
    • Hwang W.-T.
    • Lacey S.F.
    • Mahnke Y.D.
    • Melenhorst J.J.
    • et al.
    Chimeric Antigen Receptor T Cells against CD19 for Multiple Myeloma.
    N Engl J Med. 2015; 373: 1040-1047https://doi.org/10.1056/NEJMoa1504542
    • Wang X.
    • Popplewell L.L.
    • Wagner J.R.
    • Naranjo A.
    • Blanchard M.S.
    • Mott M.R.
    • et al.
    Phase 1 studies of central memory-derived CD19 CAR T-cell therapy following autologous HSCT in patients with B-cell NHL.
    Blood. 2016; 127: 2980-2990https://doi.org/10.1182/blood-2015-12-686725
    • Kebriaei P.
    • Singh H.
    • Huls M.H.
    • Figliola M.J.
    • Bassett R.
    • Olivares S.
    • et al.
    Phase i trials using sleeping beauty to generate CD19-specific CAR T cells.
    J Clin Invest. 2016; 126: 3363-3376https://doi.org/10.1172/JCI86721
    • Kalos M.
    • June C.H.
    • Levine B.L.
    • Bagg A.
    • Porter D.L.
    Chimeric Antigen Receptor–Modified T Cells in Chronic Lymphoid Leukemia.
    N Engl J Med. 2011; 365: 725-733https://doi.org/10.1056/nejmoa1103849
    • Turtle C.J.
    • Hanafi L.A.
    • Berger C.
    • Gooley T.A.
    • Cherian S.
    • Hudecek M.
    • et al.
    CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients.
    J Clin Invest. 2016; 126: 2123-2138https://doi.org/10.1172/JCI85309
    • Till B.G.
    • Jensen M.C.
    • Wang J.
    • Chen E.Y.
    • Wood B.L.
    • Greisman H.A.
    • et al.
    Adoptive immunotherapy for indolent non-hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells.
    Blood. 2008; 112: 2261-2271https://doi.org/10.1182/blood-2007-12-128843
    • Zhao Y.
    • Niu C.
    • Cui J.
    Gamma-delta (γδ) T Cells: Friend or Foe in Cancer Development.
    J Transl Med. 2018; 16: 3https://doi.org/10.1186/s12967-017-1378-2
    • Fisher J.P.H.
    • Heuijerjans J.
    • Yan M.
    • Gustafsson K.
    • Anderson J.
    γδ T cells for cancer immunotherapy: A systematic review of clinical trials.
    Oncoimmunology. 2014; 3: 1https://doi.org/10.4161/onci.27572
    • Berglund S.
    • Gaballa A.
    • Sawaisorn P.
    • Sundberg B.
    • Uhlin M.
    Expansion of gammadelta T cells from cord blood: A therapeutical possibility.
    Stem Cells Int. 2018; 2018: 8529104https://doi.org/10.1155/2018/8529104
    • Steinman R.M.
    Linking innate to adaptive immunity through dendritic cells.
    Novartis Found Symp. 2006; 279 (discussion 109-13, 216–9): 101-109
    • Gandhi R.T.
    • Kwon D.S.
    • Macklin E.A.
    • Shopis J.R.
    • McLean A.P.
    • McBrine N.
    • et al.
    Immunization of HIV-1-Infected Persons With Autologous Dendritic Cells Transfected With mRNA Encoding HIV-1 Gag and Nef.
    JAIDS J Acquir Immune Defic Syndr. 2016; 71: 246-253https://doi.org/10.1097/QAI.0000000000000852
    • Cobb A.
    • Roberts L.K.
    • Palucka A.K.
    • Mead H.
    • Montes M.
    • Ranganathan R.
    • et al.
    Development of a HIV-1 lipopeptide antigen pulsed therapeutic dendritic cell vaccine.
    J Immunol Methods. 2011; 365: 27-37https://doi.org/10.1016/J.JIM.2010.11.002
    • Anguille S.
    • Smits E.L.
    • Bryant C.
    • Van Acker H.H.
    • Goossens H.
    • Lion E.
    • et al.
    Dendritic Cells as Pharmacological Tools for Cancer Immunotherapy.
    Pharmacol Rev. 2015; 67: 731-753https://doi.org/10.1124/pr.114.009456
    • Liau L.M.
    • Ashkan K.
    • Tran D.D.
    • Campian J.L.
    • Trusheim J.E.
    • Cobbs C.S.
    • et al.
    First results on survival from a large Phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma.
    J Transl Med. 2018; 16: 1https://doi.org/10.1186/s12967-018-1507-6
    • Vivier E.
    • Raulet D.H.
    • Moretta A.
    • Caligiuri M.A.
    • Zitvogel L.
    • Lanier L.L.
    • et al.
    Innate or Adaptive Immunity? The Example of Natural Killer Cells.
    Science. 2011; 331 (80-): 44-49https://doi.org/10.1126/science.1198687
    • Borrego F.
    • Larrucea S.
    • Solana R.
    • Tarazona R.
    Editorial: NK Cell-Based Cancer Immunotherapy.
    Front Immunol. 2016; 7: 245https://doi.org/10.3389/fimmu.2016.00249
    • Marcus A.
    • Raulet D.H.
    Evidence for Natural Killer Cell Memory.
    Curr Biol. 2013; 23: R817-R820https://doi.org/10.1016/j.cub.2013.07.015
    • Sutlu T.
    • Alici E.
    Natural killer cell-based immunotherapy in cancer: current insights and future prospects.
    J Intern Med. 2009; 266: 154-181https://doi.org/10.1111/j.1365-2796.2009.02121.x
    • Jiang T.
    • Zhou C.
    • Ren S.
    Role of IL-2 in cancer immunotherapy.
    Oncoimmunology. 2016; 5e1163462https://doi.org/10.1080/2162402X.2016.1163462
    • Boyiadzis M.
    • Agha M.
    • Redner R.L.
    • Sehgal A.
    • Im A.
    • Hou J.-Z.
    • et al.
    Phase 1 clinical trial of adoptive immunotherapy using “off-the-shelf” activated natural killer cells in patients with refractory and relapsed acute myeloid leukemia.
    Cytotherapy. 2017; 19: 1225-1232https://doi.org/10.1016/j.jcyt.2017.07.008
    • Szmania S.
    • Lapteva N.
    • Garg T.
    • Greenway A.
    • Lingo J.
    • Nair B.
    • et al.
    Ex Vivo Expanded Natural Killer Cells Demonstrate Robust Proliferation In Vivo In High-Risk Relapsed Multiple Myeloma Patients.
    J Immunother. 2015; 38: 24-36https://doi.org/10.1097/CJI.0000000000000059
    • Exley M.A.
    • Friedlander P.
    • Alatrakchi N.
    • Vriend L.
    • Yue S.
    • Sasada T.
    • et al.
    Adoptive Transfer of Invariant NKT Cells as Immunotherapy for Advanced Melanoma: A Phase I Clinical Trial.
    Clin Cancer Res. 2017; 23: 3510-3519https://doi.org/10.1158/1078-0432.CCR-16-0600
    • Ciurea S.O.
    • Schafer J.R.
    • Bassett R.
    • Denman C.J.
    • Cao K.
    • Willis D.
    • et al.
    Phase 1 clinical trial using mbIL21 ex vivo–expanded donor-derived NK cells after haploidentical transplantation.
    Blood. 2017; 130: 1857-1868https://doi.org/10.1182/blood-2017-05-785659
    • Koepsell S.A.
    • Miller J.S.
    • McKenna Jr, D.H.
    Natural killer cells: a review of manufacturing and clinical utility: manufacturing and clinical utility of NK cells.
    Transfusion. 2013; 53: 404-410https://doi.org/10.1111/j.1537-2995.2012.03724.x
    • Cheng M.
    • Chen Y.
    • Xiao W.
    • Sun R.
    • Tian Z.
    NK cell-based immunotherapy for malignant diseases.
    Cell Mol Immunol. 2013; 10: 230-252https://doi.org/10.1038/cmi.2013.10
    • Fang F.
    • Xiao W.
    • Tian Z.
    NK cell-based immunotherapy for cancer.
    Semin Immunol. 2017; 31: 37-54https://doi.org/10.1016/j.smim.2017.07.009
    • Domogala A.
    • Madrigal J.A.
    • Saudemont A.
    Natural Killer Cell Immunotherapy: From Bench to Bedside.
    Front Immunol. 2015; 6: 264https://doi.org/10.3389/fimmu.2015.00264
    • Cheng M.
    • Zhang J.
    • Jiang W.
    • Chen Y.
    • Tian Z.
    Natural killer cell lines in tumor immunotherapy.
    Front Med. 2012; 6: 56-66https://doi.org/10.1007/s11684-012-0177-7
    • Lapteva N.
    • Durett A.G.
    • Sun J.
    • Rollins L.A.
    • Huye L.L.
    • Fang J.
    • et al.
    Large-scale ex vivo expansion and characterization of natural killer cells for clinical applications.
    Cytotherapy. 2012; 14: 1131-1143https://doi.org/10.3109/14653249.2012.700767
    • Shah N.N.
    • Baird K.
    • Delbrook C.P.
    • Fleisher T.A.
    • Kohler M.E.
    • Rampertaap S.
    • et al.
    Acute GVHD in patients receiving IL-15/4-1BBL activated NK cells following T-cell–depleted stem cell transplantation.
    Blood. 2015; 125: 784-792https://doi.org/10.1182/blood-2014-07-592881
    • Lapteva N.
    • Szmania S.M.
    • van Rhee F.
    • Rooney C.M.
    Clinical Grade Purification and Expansion of Natural Killer Cells.
    Crit Rev Oncog. 2014; 19: 121-132
    • Arai S.
    • Meagher R.
    • Swearingen M.
    • Myint H.
    • Rich E.
    • Martinson J.
    • et al.
    Infusion of the allogeneic cell line NK-92 in patients with advanced renal cell cancer or melanoma: a phase I trial.
    Cytotherapy. 2008; 10: 625-632https://doi.org/10.1080/14653240802301872
    • Berens C.
    • Heine A.
    • Müller J.
    • Held S.A.E.
    • Mayer K.
    • Brossart P.
    • et al.
    Variable resistance to freezing and thawing of CD34-positive stem cells and lymphocyte subpopulations in leukapheresis products.
    Cytotherapy. 2016; 18: 1325-1331https://doi.org/10.1016/j.jcyt.2016.06.014
    • Worsham D.N.
    • Reems J.-A.
    • Szczepiorkowski Z.M.
    • McKenna D.H.
    • Leemhuis T.
    • Mathew A.J.
    • et al.
    Clinical methods of cryopreservation for donor lymphocyte infusions vary in their ability to preserve functional T-cell subpopulations.
    Transfusion. 2017; 57: 1555-1565https://doi.org/10.1111/trf.14112
    • Pi C.
    • Yu G.
    • Dosa P.I.
    • Hubel A.
    Characterizing modes of action and interaction for multicomponent osmolyte solutions on Jurkat cells.
    Biotechnol Bioeng. 2019; 116: 631-643https://doi.org/10.1002/bit.26880
    • Pasley S.
    • Zylberberg C.
    • Matosevic S.
    Natural killer-92 cells maintain cytotoxic activity after long-term cryopreservation in novel DMSO-free media.
    Immunol Lett. 2017; 192: 35-41https://doi.org/10.1016/j.imlet.2017.09.012
    • Ragoonanan V.
    • Hubel A.
    • Aksan A.
    Response of the cell membrane–cytoskeleton complex to osmotic and freeze/thaw stresses.
    Cryobiology. 2010; 61: 335-344https://doi.org/10.1016/j.cryobiol.2010.10.160
    • Desreumaux P.
    • Foussat A.
    • Allez M.
    • Beaugerie L.
    • Hébuterne X.
    • Bouhnik Y.
    • et al.
    Safety and efficacy of antigen-specific regulatory T-cell therapy for patients with refractory Crohn's disease.
    Gastroenterology. 2013; 143: 1135-1138https://doi.org/10.1053/j.gastro.2012.07.116
    • Cruz C.R.Y.
    • Micklethwaite K.P.
    • Savoldo B.
    • Ramos C.A.
    • Lam S.
    • Ku S.
    • et al.
    Infusion of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant: A phase 1 study.
    Blood. 2013; 122: 2965-2973https://doi.org/10.1182/blood-2013-06-506741
    • Ramos C.A.
    • Savoldo B.
    • Torrano V.
    • Ballard B.
    • Zhang H.
    • Dakhova O.
    • et al.
    Clinical responses with T lymphocytes targeting malignancy-associated κ light chains.
    J Clin Invest. 2016; 126: 2588-2596https://doi.org/10.1172/JCI86000
    • Kalos M.
    • Levine B.L.
    • Porter D.L.
    • Katz S.
    • Grupp S.A.
    • Bagg A.
    • et al.
    T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia.
    Sci Transl Med. 2011; 395ra73https://doi.org/10.1126/scitranslmed.3002842
    • Porter D.L.
    • Hwang W.T.
    • Frey N.V.
    • Lacey S.F.
    • Shaw P.A.
    • Loren A.W.
    • et al.
    Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia.
    Sci Transl Med. 2015; 7303ra139https://doi.org/10.1126/scitranslmed.aac5415
    • Maude S.L.
    • Frey N.
    • Shaw P.
    • Aplenc R.
    • Barrett D.M.
    • Bunin N.J.
    • et al.
    Chimeric Antigen Receptor T Cells for Sustained Remissions in Leukemia.
    N Engl J Med. 2014; 371: 1507-1517https://doi.org/10.1056/NEJMoa1407222
    • Singh H.
    • Huls H.
    • Kebriaei P.
    • Cooper L.J.N.
    A new approach to gene therapy using Sleeping Beauty to genetically modify clinical-grade T cells to target CD19.
    Immunol Rev. 2014; 257: 181-190https://doi.org/10.1111/imr.12137
    • Singh H.
    • Figliola M.J.
    • Dawson M.J.
    • Olivares S.
    • Zhang L.
    • Yang G.
    • et al.
    Manufacture of Clinical-Grade CD19-Specific T Cells Stably Expressing Chimeric Antigen Receptor Using Sleeping Beauty System and Artificial Antigen Presenting Cells.
    PLoS One. 2013; 8: e64138https://doi.org/10.1371/journal.pone.0064138
    • Till B.G.
    • Jensen M.C.
    • Wang J.
    • Qian X.
    • Gopal A.K.
    • Maloney D.G.
    • et al.
    CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: Pilot clinical trial results.
    Blood. 2012; 119: 3940-3950https://doi.org/10.1182/blood-2011-10-387969
    • Ahmed N.
    • Brawley V.S.
    • Hegde M.
    • Robertson C.
    • Ghazi A.
    • Gerken C.
    • et al.
    Human epidermal growth factor receptor 2 (HER2) - Specific chimeric antigen receptor - Modified T cells for the immunotherapy of HER2-positive sarcoma.
    J Clin Oncol. 2015; 33: 1688-1696https://doi.org/10.1200/JCO.2014.58.0225
    • Pule M.A.
    • Savoldo B.
    • Myers G.D.
    • Rossig C.
    • Russell H.V.
    • Dotti G.
    • et al.
    Virus-specific T cells engineered to coexpress tumor-specific receptors: Persistence and antitumor activity in individuals with neuroblastoma.
    Nat Med. 2008; 77: 1264-1270https://doi.org/10.1038/nm.1882
    • Brown C.E.
    • Badie B.
    • Barish M.E.
    • Weng L.
    • Ostberg J.R.
    • Chang W.C.
    • et al.
    Bioactivity and safety of IL13Rα2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma.
    Clin Cancer Res. 2015; 21: 4062-4072https://doi.org/10.1158/1078-0432.CCR-15-0428
    • Katz S.C.
    • Burga R.A.
    • McCormack E.
    • Wang L.J.
    • Mooring W.
    • Point G.R.
    • et al.
    Phase I hepatic immunotherapy for metastases study of intra-arterial chimeric antigen receptor-modified T-cell therapy for CEA+ liver metastases.
    Clin Cancer Res. 2015; 21: 3149-3159https://doi.org/10.1158/1078-0432.CCR-14-1421
    • Van Driessche A.
    • Van De Velde A.L.R.
    • Nijs G.
    • Braeckman T.
    • Stein B.
    • De Vries J.M.
    • et al.
    Clinical-grade manufacturing of autologous mature mRNA-electroporated dendritic cells and safety testing in acute myeloid leukemia patients in a phase i dose-escalation clinical trial.
    Cytotherapy. 2009; 11: 653-668https://doi.org/10.1080/14653240902960411
  1. Palucka AK, Banchereau JF, Roberts L. Methods And Compositions For Treating Breast Cancer With Dendritic Cell Vaccines. United States Patent No. US20150368612A1, 2015.

    • Rosenblatt J.
    • Stone R.M.
    • Uhl L.
    • Neuberg D.
    • Joyce R.
    • Levine J.D.
    • et al.
    Individualized vaccination of AML patients in remission is associated with induction of antileukemia immunity and prolonged remissions.
    Sci Transl Med. 2016; 8 (368ra171)https://doi.org/10.1126/scitranslmed.aag1298
    • Rosenblatt J.
    • Avivi I.
    • Vasir B.
    • Uhl L.
    • Munshi N.C.
    • Katz T.
    • et al.
    Vaccination with dendritic cell/tumor fusions following autologous stem cell transplant induces immunologic and clinical responses in multiple myeloma patients.
    Clin Cancer Res. 2013; 19: 3640-3648https://doi.org/10.1158/1078-0432.CCR-13-0282
    • Rosenblatt J.
    • Vasir B.
    • Uhl L.
    • Blotta S.
    • MacNamara C.
    • Somaiya P.
    • et al.
    Vaccination with dendritic cell/tumor fusion cells results in cellular and humoral antitumor immune responses in patients with multiple myeloma.
    Blood. 2011; 117: 393-402https://doi.org/10.1182/blood-2010-04-277137
    • Myers J.W.
    • Herbert G.S.
    • Clifton G.
    • Vreeland T.J.
    • Brown T.A.
    • Peace K.M.
    • et al.
    A prospective, randomized, blinded, placebo-controlled, phase IIb trial of an autologous tumor lysate + yeast cell wall particles (YCWP) + dendritic cells (DC) vaccine vs unloaded YCWP + DC and embedded phase I/IIa trial with tumor lysate particle only (TLPO) vaccine in stage III and stage IV (resected) melanoma to prevent recurrence.
    J Clin Oncol. 2018; 36: TPS201https://doi.org/10.1200/JCO.2018.36.5_suppl
    • Phuphanich S.
    • Wheeler C.J.
    • Rudnick J.D.
    • Mazer M.
    • Wang H.
    • Nuño M.A.
    • et al.
    Phase i trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma.
    Cancer Immunol Immunother. 2013; 62: 125-135https://doi.org/10.1007/s00262-012-1319-0
    • Westermann J.
    • Kopp J.
    • Van Lessen A.
    • Hecker A.C.
    • Baskaynak G.
    • Le Coutre P.
    • et al.
    Vaccination with autologous non-irradiated dendritic cells in patients with bcr/abl+ chronic myeloid leukaemia.
    Br J Haematol. 2007; 137: 297-306https://doi.org/10.1111/j.1365-2141.2007.06547.x
    • Westermann J.
    • Korner I.J.
    • Kopp J.
    • Kurz S.
    • Zenke M.
    • Dorken B.
    • et al.
    Cryopreservation of mature monocyte-derived human dendritic cells for vaccination: influence on phenotype and functional properties.
    Cancer Immunol Immunother. 2003; 52: 194-198https://doi.org/10.1007/s00262-002-0355-6
    • Rodriguez J.
    • Castañón E.
    • Perez-Gracia J.L.
    • Rodriguez I.
    • Viudez A.
    • Alfaro C.
    • et al.
    A randomized phase II clinical trial of dendritic cell vaccination following complete resection of colon cancer liver metastasis.
    J Immunother Cancer. 2018; 6: 96https://doi.org/10.1186/s40425-018-0405-z
    • Alfaro C.
    • Perez-Gracia J.L.
    • Suarez N.
    • Rodriguez J.
    • Fernandez de Sanmamed M.
    • Sangro B.
    • et al.
    Pilot Clinical Trial of Type 1 Dendritic Cells Loaded with Autologous Tumor Lysates Combined with GM-CSF, Pegylated IFN, and Cyclophosphamide for Metastatic Cancer Patients.
    J Immunol. 2011; 187: 6130-6142https://doi.org/10.4049/jimmunol.1102209
    • van de Loosdrecht A.A.
    • van Wetering S.
    • Santegoets S.J.A.M.
    • Singh S.K.
    • Eeltink C.M.
    • den Hartog Y.
    • et al.
    A novel allogeneic off-the-shelf dendritic cell vaccine for post-remission treatment of elderly patients with acute myeloid leukemia.
    Cancer Immunol Immunother. 2018; 67: 1505-1518https://doi.org/10.1007/s00262-018-2198-9
    • Morse M.A.
    • Nair S.K.
    • Boczkowski D.
    • Tyler D.
    • Hurwitz H.I.
    • Proia A.
    • et al.
    The Feasibility and Safety of Immunotherapy with Dendritic Cells Loaded with CEA mRNA Following Neoadjuvant Chemoradiotherapy and Resection of Pancreatic Cancer.
    Int J Gastrointest Cancer. 2002; 32: 1-6https://doi.org/10.1385/IJGC:32:1:1
    • Mansilla M.J.
    • Contreras-Cardone R.
    • Navarro-Barriuso J.
    • Cools N.
    • Berneman Z.
    • Ramo-Tello C.
    • et al.
    Cryopreserved vitamin D3-tolerogenic dendritic cells pulsed with autoantigens as a potential therapy for multiple sclerosis patients.
    J Neuroinflammation. 2016; 13: 1-11https://doi.org/10.1186/s12974-016-0584-9
    • Svane I.M.
    • Pedersen A.E.
    • Johansen J.S.
    • Johnsen H.E.
    • Nielsen D.
    • Kamby C.
    • et al.
    Vaccination with p53 peptide-pulsed dendritic cells is associated with disease stabilization in patients with p53 expressing advanced breast cancer; monitoring of serum YKL-40 and IL-6 as response biomarkers.
    Cancer Immunol Immunother. 2007; 56: 1485-1499https://doi.org/10.1007/s00262-007-0293-4
    • Svane I.M.
    • Pedersen A.E.
    • Johnsen H.E.
    • Nielsen D.
    • Kamby C.
    • Gaarsdal E.
    • et al.
    Vaccination with p53-peptide-pulsed dendritic cells, of patients with advanced breast cancer: Report from a phase I study.
    Cancer Immunol Immunother. 2004; 53: 633-641https://doi.org/10.1007/s00262-003-0493-5
    • Ridolfi L.
    • De Rosa F.
    • Fiammenghi L.
    • Petrini M.
    • Granato A.M.
    • Ancarani V.
    • et al.
    Complementary vaccination protocol with dendritic cells pulsed with autologous tumour lysate in patients with resected stage III or IV melanoma: Protocol for a phase II randomised trial (ACDC Adjuvant Trial).
    BMJ Open. 2018; 8: 8-13https://doi.org/10.1136/bmjopen-2018-021701
    • Palma M.
    • Hansson L.
    • Choudhury A.
    • Nasman-Glaser B.
    • Eriksson I.
    • Adamson L.
    • et al.
    Molecular data of UL24 homolog gene (ORF37) from Brazilian isolates of equine herpesvirus type 1.
    Cancer Immunol Immunother. 2012; 61: 865-879https://doi.org/10.1007/s00262-011-1149-5
    • Adamson L.
    • Palma M.
    • Choudhury A.
    • Eriksson I.
    • Näsman-Glaser B.
    • Hansson M.
    • et al.
    Generation of a dendritic cell-based vaccine in chronic lymphocytic leukaemia using clinimacs platform for large-scale production.
    Scand J Immunol. 2009; 69: 529-536https://doi.org/10.1111/j.1365-3083.2009.02249.x
    • Kitawaki T.
    • Kadowaki N.
    • Fukunaga K.
    • Kasai Y.
    • Maekawa T.
    • Ohmori K.
    • et al.
    Cross-priming of CD8+T cells in vivo by dendritic cells pulsed with autologous apoptotic leukemic cells in immunotherapy for elderly patients with acute myeloid leukemia.
    Exp Hematol. 2011; 39: 424-433https://doi.org/10.1016/j.exphem.2011.01.001
    • Imhof M.
    • Lipovac M.
    • Angleitner-Boubenizek L.
    • Barta J.
    • Gomez I.
    • Krupa A.H.
    • et al.
    Double-loaded mature dendritic cell (DC) therapy for non-HLA-restricted patients with advanced ovarian cancer: Final results of a clinical phase I study.
    J Clin Oncol. 2013; 31: 3052https://doi.org/10.1200/jco.2013.31.15_suppl.3052
    • Olin M.R.
    • Low W.
    • McKenna D.H.
    • Haines S.J.
    • Dahlheimer T.
    • Nascene D.
    • et al.
    Vaccination with dendritic cells loaded with allogeneic brain tumor cells for recurrent malignant brain tumors induces a CD4(+)IL17(+) response.
    J Immunother Cancer. 2014; 2: 4https://doi.org/10.1186/2051-1426-2-4
    • Suehiro Y.
    • Hasegawa A.
    • Iino T.
    • Sasada A.
    • Watanabe N.
    • Matsuoka M.
    • et al.
    Clinical outcomes of a novel therapeutic vaccine with Tax peptide-pulsed dendritic cells for adult T cell leukaemia/lymphoma in a pilot study.
    Br J Haematol. 2015; 169: 356-367https://doi.org/10.1111/bjh.13302
    • Nagayama H.
    • Sato K.
    • Morishita M.
    • Uchimaru K.
    • Oyaizu N.
    • Inazawa T.
    • et al.
    Results of a phase I clinical study using autologous tumour lysate-pulsed monocyte-derived mature dendritic cell vaccinations for stage IV malignant melanoma patients combined with low dose interleukin-2.
    Melanoma Res. 2003; 13: 521-530https://doi.org/10.1097/00008390-200310000-00011
    • O'Neill D.
    • Bhardwaj N.
    Generation of autologous peptide- and protein-pulsed dendritic cells for patient-specific immunotherapy.
    Methods Mol Med. 2005; 109: 97-112
    • Polyzoidis S.
    • Ashkan K.
    DCVax®-L–developed by Northwest Biotherapeutics.
    Hum Vaccin Immunother. 2014; 10: 3139-3145https://doi.org/10.4161/hv.29276
    • Hong S.
    • Li H.
    • Qian J.
    • Yang J.
    • Lu Y.
    • Yi Q.
    Optimizing dendritic cell vaccine for immunotherapy in multiple myeloma:Tumour lysates are more potent tumour antigens than idiotype protein to promote anti-tumour immunity.
    Clin Exp Immunol. 2012; 170: 167-177https://doi.org/10.1111/j.1365-2249.2012.04642.x
    • Kyte J.A.
    • Mu L.
    • Aamdal S.
    • Kvalheim G.
    • Dueland S.
    • Hauser M.
    • et al.
    Phase I/II trial of melanoma therapy with dendritic cells transfected with autologous tumor-mRNA.
    Cancer Gene Ther. 2006; 13: 905-918https://doi.org/10.1038/sj.cgt.7700961
    • Mu L.J.
    • Gaudernack G.
    • Sæbøe-Larssen S.
    • Hammerstad H.
    • Tierens A.
    • Kvalheim G.
    A Protocol for Generation of Clinical Grade mRNA-Transfected Monocyte-Derived Dendritic Cells for Cancer Vaccines.
    Scand J Immunol. 2003; 58: 578-586https://doi.org/10.1046/j.1365-3083.2003.01333.x
    • Mu L.J.
    • Kyte J.A.
    • Kvalheim G.
    • Aamdal S.
    • Dueland S.
    • Hauser M.
    • et al.
    Immunotherapy with allotumour mRNA-transfected dendritic cells in androgen-resistant prostate cancer patients.
    Br J Cancer. 2005; 93: 749-756https://doi.org/10.1038/sj.bjc.6602761
  2. Schendel DJ, Zobywalski A, Bigalke I. Compositions For The Preparation Of Mature Dendritic Cells. United States Patent No. US 2010/0284976 A1, 2010.

  3. Vik-Mo E, Oslo UH. Open Label Randomized Phase II/III Trial of Dendritic Cell Immunotherapy Against Cancer Stem Cells in Glioblastoma Patients Receiving Standard Therapy (recruiting)2018:ClinicalTrials.gov Identifier NCT03548571.

  4. PrimeVax Immuno-Oncology Inc. Study of Dendritic Cells Pulsed With Tumor Lysate in Advanced Melanoma Dendritic Cells in Advanced Melanoma (not yet recruiting)2019:ClinicalTrials.gov Identifier NCT03803397.

    • Hobo W.
    • Strobbe L.
    • Maas F.
    • Fredrix H.
    • Greupink-Draaisma A.
    • Esendam B.
    • et al.
    Immunogenicity of dendritic cells pulsed with MAGE3, Survivin and B-cell maturation antigen mRNA for vaccination of multiple myeloma patients.
    Cancer Immunol Immunother. 2013; 62: 1381-1392https://doi.org/10.1007/s00262-013-1438-2
    • Schreibelt G.
    • Bol K.F.
    • Westdorp H.
    • Wimmers F.
    • Aarntzen E.H.J.G.
    • Duiveman-De Boer T.
    • et al.
    Effective clinical responses in metastatic melanoma patients after vaccination with primary myeloid dendritic cells.
    Clin Cancer Res. 2016; 22: 2155-2166https://doi.org/10.1158/1078-0432.CCR-15-2205
    • Lee J.H.
    • Tak W.Y.
    • Lee Y.
    • Heo M.K.
    • Song J.S.
    • Kim H.Y.
    • et al.
    Adjuvant immunotherapy with autologous dendritic cells for hepatocellular carcinoma, randomized phase II study.
    Oncoimmunology. 2017; 6: 1-12https://doi.org/10.1080/2162402X.2017.1328335
  5. Lee Y, Kim Y-M, Kim S-Y, Han S-S, Bae Y-S. Method For Preparing Dendritic Cell, Dendritic Cell Prepared Thereby, And Use Thereof. US 2017/0196955A1, 2017. doi:10.1037/t24245-000.

    • Tada F.
    • Abe M.
    • Hirooka M.
    • Ikeda Y.
    • Hiasa Y.
    • Lee Y.
    • et al.
    Phase I/II study of immunotherapy using tumor antigen-pulsed dendritic cells in patients with hepatocellular carcinoma.
    Int J Oncol. 2012; 41: 1601-1609https://doi.org/10.3892/ijo.2012.1626
    • Podrazil M.
    • Horvath R.
    • Becht E.
    • Rozkova D.
    • Bilkova P.
    • Hromadkova H.
    • et al.
    Phase I/II clinical trial of dendritic-cell based immunotherapy (DCVAC/PCa) combined with chemotherapy in patients with metastatic, castration-resistant prostate cancer.
    Oncotarget. 2015; 6: 18192-18205https://doi.org/10.18632/oncotarget.4145
    • Pandha H.S.
    • John R.J.
    • Hutchinson J.
    • James N.
    • Whelan M.
    • Corbishley C.
    • et al.
    Dendritic cell immunotherapy for urological cancers using cryopreserved allogeneic tumour lysate-pulsed cells: A phase I/II study.
    BJU Int. 2004; 94: 412-418https://doi.org/10.1111/j.1464-410X.2004.04922.x
    • John J.
    • Hutchinson J.
    • Dalgleish A.
    • Pandha H.
    Cryopreservation of immature monocyte-derived dendritic cells results in enhanced cell maturation but reduced endocytic activity and efficiency of adenoviral transduction.
    J Immunol Methods. 2003; 272: 35-48https://doi.org/10.1016/S0022-1759(02)00430-1
    • Gross S.
    • Erdmann M.
    • Haendle I.
    • Voland S.
    • Berger T.
    • Schultz E.
    • et al.
    Twelve-year survival and immune correlates in dendritic cell–vaccinated melanoma patients.
    JCI Insight. 2017; 2: e91438https://doi.org/10.1172/jci.insight.91438
    • Schuler-Thurner B.
    • Schultz E.S.
    • Berger T.G.
    • Weinlich G.
    • Ebner S.
    • Woerl P.
    • et al.
    Rapid Induction of Tumor-specific Type 1 T Helper Cells in Metastatic Melanoma Patients by Vaccination with Mature, Cryopreserved, Peptide-loaded Monocyte-derived Dendritic Cells.
    J Exp Med. 2002; 195: 1279-1288https://doi.org/10.1084/jem.20012100
    • Feuerstein B.
    • Berger T.G.
    • Maczek C.
    • Röder C.
    • Schreiner D.
    • Hirsch U.
    • et al.
    A method for the production of cryopreserved aliquots of antigen-preloaded, mature dendritic cells ready for clinical use.
    J Immunol Methods. 2000; 245: 15-29https://doi.org/10.1016/S0022-1759(00)00269-6
    • Giannoukakis N.
    • Phillips B.
    • Finegold D.
    • Harnaha J.
    • Trucco M.
    Phase I (safety) study of autologous tolerogenic dendritic cells in type 1 diabetic patients.
    Diabetes Care. 2011; 34: 2026-2032https://doi.org/10.2337/dc11-0472
    • Lau R.
    • Wang F.
    • Jeffery G.
    • Marty V.
    • Kuniyoshi J.
    • Bade E.
    • et al.
    Phase I trial of intravenous peptide-pulsed dendritic cells in patients with metastatic melanoma.
    J Immunother. 2001; 24: 66-78
    • Tonn T.
    • Schwabe D.
    • Klingemann H.G.
    • Becker S.
    • Esser R.
    • Koehl U.
    • et al.
    Treatment of patients with advanced cancer with the natural killer cell line NK-92.
    Cytotherapy. 2013; 15: 1563-1570https://doi.org/10.1016/j.jcyt.2013.06.017
    • Kottaridis P.D.
    • North J.
    • Tsirogianni M.
    • Marden C.
    • Samuel E.R.
    • Jide-Banwo S.
    • et al.
    Two-Stage Priming of Allogeneic Natural Killer Cells for the Treatment of Patients with Acute Myeloid Leukemia: A Phase I Trial.
    PLoS One. 2015; 10e0123416https://doi.org/10.1371/journal.pone.0123416
    • Lister J.
    • Rybka W.B.
    • Donnenberg A.D.
    • deMagalhaes-Silverman M.
    • Pincus S.M.
    • Bloom E.J.
    • et al.
    Autologous Peripheral Blood Stem Cell Transplantation and Adoptive Immunotherapy with Activated Natural Killer Cells in the Immerdiate Posttransplant Period.
    Clin Cancer Res. 1995; 1: 607-614
View full text