Skip to main content

Sendai Virus-Based Reprogramming of Mesenchymal Stromal/Stem Cells from Umbilical Cord Wharton’s Jelly into Induced Pluripotent Stem Cells

  • Protocol
  • First Online:
Induced Pluripotent Stem (iPS) Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1357))

Abstract

In an attempt to bring pluripotent stem cell biology closer to reaching its full potential, many groups have focused on improving reprogramming protocols over the past several years. The episomal modified Sendai virus-based vector has emerged as one of the most practical ones. Here we describe reprogramming of mesenchymal stromal/stem cells (MSC) derived from umbilical cord Wharton’s Jelly into induced pluripotent stem cells (iPSC) using genome non-integrating Sendai virus-based vectors. The detailed protocols of iPSC colony cryopreservation (vitrification) and adaption to feeder-free culture conditions are also included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Loh YH, Yang L, Yang JC et al (2011) Genomic approaches to deconstruct pluripotency. Annu Rev Genomics Hum Genet 12:165–185

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Inoue H, Yamanaka S (2011) The use of induced pluripotent stem cells in drug development. Clin Pharmacol Ther 89:655–661

    Article  PubMed  CAS  Google Scholar 

  3. Egawa N, Kitaoka S, Tsukita K et al (2012) Drug screening for ALS using patient-specific induced pluripotent stem cells. Sci Transl Med 4:145ra104

    PubMed  Google Scholar 

  4. Hou Z, Zhang J, Schwartz MP et al (2013) A human pluripotent stem cell platform for assessing developmental neural toxicity screening. Stem Cell Res Ther 4(Suppl 1):S12

    Article  PubMed  PubMed Central  Google Scholar 

  5. Paşca SP, Portmann T, Voineagu I et al (2011) Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nat Med 17:1657–1662

    Article  PubMed  PubMed Central  Google Scholar 

  6. Miller JD, Ganat YM, Kishinevsky S et al (2013) Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell 13:691–705

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  PubMed  CAS  Google Scholar 

  8. Narsinh KH, Plews J, Wu JC (2011) Comparison of human induced pluripotent and embryonic stem cells: fraternal or identical twins? Mol Ther 19:635–638

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Malik N, Rao M (2013) A review of the methods for human iPSC derivation. Methods Mol Biol 997:23–33

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Fusaki N, Ban H, Nishiyama A (2009) Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci 85:348–362

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Nishishita N, Shikamura M, Takenaka C et al (2012) Generation of virus-free induced pluripotent stem cell clones on a synthetic matrix via a single cell subcloning in the naïve state. PLoS One 7(6):e38389

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Ono M, Hamada Y, Horiuchi Y et al (2012) Generation of induced pluripotent stem cells from human nasal epithelial cells using a Sendai virus vector. PLoS One 7:e42855

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Kudva YC, Ohmine S, Greder LV et al (2012) Transgene-free disease-specific induced pluripotent stem cells from patients with type 1 and type 2 diabetes. Stem Cells Transl Med 1:451–461

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Jin ZB, Okamoto S, Xiang P et al (2012) Integration-free induced pluripotent stem cells derived from retinitis pigmentosa patient for disease modeling

    Google Scholar 

  15. Merling RK, Sweeney CL, Choi U et al (2013) Transgene-free iPSCs generated from small volume peripheral blood nonmobilized CD34+ cells. Blood 121:e98–e107

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Wakao H, Yoshikiyo K, Koshimizu U et al (2013) Expansion of functional human mucosal-associated invariant T cells via reprogramming to pluripotency and redifferentiation. Cell Stem Cell 12:546–558

    Article  PubMed  CAS  Google Scholar 

  17. Kim DW, Staples M, Shinozuka K et al (2013) Wharton’s Jelly-derived mesenchymal stem cells: phenotypic characterization and optimizing their therapeutic potential for clinical applications. Int J Mol Sci 14:11692–11712

    Article  PubMed  PubMed Central  Google Scholar 

  18. Marcus AJ, Woodbury D (2008) Fetal stem cells from extra-embryonic tissues: do not discard. J Cell Mol Med 12(3):730–742

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Pappa KI, Anagnou NP (2009) Novel sources of fetal stem cells: where do they fit on the developmental continuum? Regen Med 4:423–433

    Article  PubMed  Google Scholar 

  20. Badraiq H, Devito L, Ilic D (2014) Isolation and expansion of mesenchymal stromal/stem cells from umbilical cord under chemically defined conditions. Methods Mol Biol [Epub ahead of print]

    Google Scholar 

  21. Devito L, Badraiq H, Galleu A et al (2014) Wharton’s Jelly MSC derived under chemically defined animal product-free low oxygen conditions are rich in MSCA-1+ subpopulation. Regen Med (in press)

    Google Scholar 

  22. Reubinoff BE, Pera MF, Vajta G et al (2001) Effective cryopreservation of human embryonic stem cells by the open pulled straw vitrification method. Hum Reprod 16:2187–2194

    Article  PubMed  CAS  Google Scholar 

  23. Ilic D, Stephenson E, Wood V et al (2012) Derivation and feeder-free propagation of human embryonic stem cells under xeno-free conditions. Cytotherapy 14:122–128

    Article  PubMed  CAS  Google Scholar 

  24. Stephenson E, Jacquet L, Miere C et al (2012) Derivation and propagation of human embryonic stem cell lines from frozen embryos in an animal product-free environment. Nat Protoc 7:1366–1381

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by the studentship to C.M. from the Medical Research Council, UK.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Miere, C., Devito, L., Ilic, D. (2014). Sendai Virus-Based Reprogramming of Mesenchymal Stromal/Stem Cells from Umbilical Cord Wharton’s Jelly into Induced Pluripotent Stem Cells. In: Turksen, K., Nagy, A. (eds) Induced Pluripotent Stem (iPS) Cells. Methods in Molecular Biology, vol 1357. Humana Press, New York, NY. https://doi.org/10.1007/7651_2014_163

Download citation

  • DOI: https://doi.org/10.1007/7651_2014_163

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3054-8

  • Online ISBN: 978-1-4939-3055-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics